Search results for "Moore-Penrose inverse"

showing 2 items of 2 documents

Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms

2021

Both time- and frequency-domain solution techniques are developed for determining the response of linear multi-degree-of-freedom systems exhibiting singular parameter matrices and endowed with derivative terms of noninteger orders modeled as rational numbers. This is done based on the Moore-Penrose matrix inverse theory, in conjunction with a state variable formulation and with a complex modal analysis treatment. It is worth noting that, for the class of systems considered herein, this treatment also yields decoupled governing equations, thus facilitating further their numerical solution. Next, a generalization of the standard frequency-domain input-output (excitation-response) relationship…

Engineering dynamics Fractional derivative Moore-Penrose inverse Singular matrixMechanics of MaterialsMechanical EngineeringSingular matrixLinear systemApplied mathematicsRandom vibrationSettore ICAR/08 - Scienza Delle CostruzioniMoore–Penrose pseudoinverseMathematicsFractional calculusJournal of Engineering Mechanics
researchProduct

Random vibration of linear and nonlinear structural systems with singular matrices: A frequency domain approach

2017

Abstract A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based f…

Frequency responseAcoustics and Ultrasonics02 engineering and technologyCondensed Matter PhysicAcoustics and Ultrasonic01 natural sciences0203 mechanical engineering0103 physical sciencesStochastic dynamicMechanics of Material010301 acousticsMoore–Penrose pseudoinverseMathematicsCovariance matrixMechanical EngineeringMathematical analysisLinear systemEquations of motionCondensed Matter PhysicsMoore-Penrose inverseFrequency domainNonlinear systemFrequency domain; Moore-Penrose inverse; Random vibration; Singular matrix; Stochastic dynamics; Condensed Matter Physics; Mechanics of Materials; Acoustics and Ultrasonics; Mechanical Engineering020303 mechanical engineering & transportsMechanics of MaterialsFrequency domainRandom vibrationSingular matrixRandom vibration
researchProduct